
Modelling Ti in-diffusion in 

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 357

(http://iopscience.iop.org/0953-8984/9/2/003)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 06:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/2
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 357–364. Printed in the UK PII: S0953-8984(97)76195-2

Modelling Ti in-diffusion in LiNbO 3

Humberto Filomeno da Silva Filho, Sérgio Carlos Zilio and
Fredrico Dias Nunes
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Abstract. This work presents theoretical results on the modelling of Ti in-diffusion in LiNbO3

assuming the Ti activation energy to be spatially dependent along the diffusion depth direction as
consequence of the Li concentration depletion due to its out-diffusion. The model also considers
that Ti diffusion occurs as an ion exchange process in which Ti4+ ions substitute Nb5+ ions
located in Li sites. The resulting diffusion equation is numerically solved according to initial
and boundary conditions chosen to describe as close as possible the experimental scenario. The
results show that this approach leads to highly asymmetrical Ti concentration profiles within the
LiNbO3 crystal, as already determined experimentally.

1. Introduction

Channel waveguides are important components for manufacturing opto-electronic devices,
such as modulators [1], switches [2] and interferometers [3]. They are also important for
many applications in signal generation, transmission and processing in telecommunication,
and in integrated optics in general. Ti in-diffusion in LiNbO3 is a well established technology
as are others such as proton exchange [4]. Although the process of Ti in-diffusion in LiNbO3

is widely used and well controlled, some physical aspects of this technique remain to be
studied as result of controversial or inconclusive explanations. One point still unclear
concerns the way Ti diffuses in LiNbO3: whether it is through Li and/or Nb sites, as
discussed in the models presented by Buchalet al [5], Sugii et al [6], Hauer et al [7]
and Kollewe and Kling [8]. Another point not definitely closed is the description of
the large anomalous lateral diffusion experimentally observed inz-cut wafers [9]. This
effect was tentatively explained by Burnset al [10] and Fukuma and Noda [9] as a
consequence of the anisotropy of the LiNbO3 lattice, resulting in an anisotropic Ti diffusivity,
D, but this is not in agreement with experimental results of Holmes and Smith [11].
Alternatively, the enhanced lateral diffusion was theoretically described by Fontaineet al
[12] by solving the two-dimensional diffusion equation, under Fick’s approach, with a
spatially dependent diffusivity along the depth direction, mainly related to local defects,
vacancies or compositional variations in the crystal, induced during the diffusion process. In
order have an analytical solution using the finite integral transform technique [13], Fontaine
assumedD to be a steplike function, having a higher value in a region just 0.01 µm
below the surface and a lower value deeper in the bulk. Later, Nuneset al [14] proposed
an alternative description for the one-dimensional Ti in-diffusion based on experimental
results of Kollewe and Kling [8]. Considering that the diffusion process occurs with Ti4+

ions replacing Nb5+ ions located in Li sites and assuming no source or sink of charges
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inside the crystal, the model uses the principle of charge neutrality and applies the Nernst–
Planck conceptualization. This naturally leads to a spatially dependent effective diffusivity
of Ti in LiNbO3. The resulting diffusion equation was numerically solved for a planar
geometry using the finite-element collocation technique [15] with appropriate boundary
conditions. This numerical method was extended by Silva to the two-dimensional diffusion
problem [16], but the results indicated that even with a spatially dependent diffusivity only
a small asymmetry is achieved, as will be shown later.

This work intends to present a more complete description of the Ti in-diffusion process,
but before going into further detail, let us make some comments with respect to the approach
adopted by Fontaineet al [12]. They initially assume a diffusivity that is exponentially
dependent on the diffusion depth but, in order to have an analytical solution, the exponential
is approximated by a steplike function, which is not physically rigorous. Besides, they
consider as boundary conditions that all Ti film is initially within the crystal. In the present
work, the Ti in-diffusion process is modelled by considering the Ti activation energy to be
spatially dependent along the direction perpendicular to the crystal surface where the Ti film
is deposited, as a consequence of the Li out-diffusion [17, 18], causing an asymmetry in the
dynamical behaviour of the diffusion process. This assumption follows the experimental
results of Holmes and Smith [11] showing that the Ti diffusivity in LiNbO3 increases
when the Li molar percentage decreases. The payback of this approach is that no analytical
solution for the diffusion equation is available and the problem has to be solved numerically,
which can be done with the two-dimensional finite-element collation technique [16]. With
this method, the initial and boundary conditions can be chosen as close as possible to the
experimentally situation. It is considered that at the initial time (t = 0) no Ti is present
inside the crystal and the film acts as a continuous source of this element up to a timeτs

(switching time) when all the surface phase will be completely diffused within the LiNbO3

crystal. Fort > τs , a second diffusion stage takes place in which the Ti mass in the crystal
is conserved and the diffusion leads to the equalization of the gradient concentration for very
long diffusion times. On the other hand, aiming to introduce a more complete description
of the physical phenomena taking place in the diffusion process, the model presented here
also considers the possibility of ion exchange [14]. This comes from the fact that the ions
participating in the Ti in-diffusion process (Ti and Nb) have different valencies which might
lead to an internal electrical local field. Although this process may actually be occurring
during the Ti diffusion, we show here that it is not as important as the activation energy
spatial dependence to explain the highly asymmetrical Ti concentration profile.

2. Model formulation

This section presents the formulation of the model employed to calculate the Ti in-diffusion
in LiNbO3. Figure 1 shows the Cartesian system relative to the crystal,x being the direction
parallel to the surface where the Ti film is deposited andy the depth diffusion direction. As
in [14], it is assumed that Ti diffuses through Li sites occupied by Nb and, since the ions
have different valencies (Ti4+ and Nb5+) [8, 11], charge balance should occur. The time
required for charge balance is assumed to be much shorter than the time required for the
concentration front to advance appreciably and the charge balance equation can be formally
expressed as:

pCT i + qCNb = C0 (1)

where p = 4 and q = 5 are the valencies of the Ti and Nb ions, respectively,C0 is
an equivalent global concentration and the other terms are the concentration of the ions
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identified by the subscripts. According to the Nernst–Planck approach, and considering that
the internal electrical field and the gradients of Ti and Nb concentrations are collinear, each
ion mass flux is given by:

Ji = −Di

[
∇Ci + ziFCi

KT
E

]
(2)

where i stands for Ti or Nb,zi is the valence ofith ion (p for Ti and q for Nb), F the
Faraday constant,K the Boltzmann constant,T the temperature andE the internal electric
field. By considering that no source or sink of charges exists, the fluxes of both ions (Ti
and Nb) have to satisfy the condition:

pJT i + qJNb = 0 (3)

Figure 1. The geometry adopted to describe the Ti in-diffusion in LiNbO3.

Upon substitution of equation (2) into equation (3), and using equation (1) to express
CNb in terms ofCT i one obtains:

FE

KT
= p

q

[
1 − r

1 − α CT i

C0

]∇CT i

C0
(4)

wherer = DT i/DNb andα = p(1− rp/q). Substituting this equation into equation (2) we
obtain:

JT i = −Deff ∇CT i (5)

where

Deff = DT i

(1 − β CT i

C0

1 − α CT i

C0

)
(6)

andβ = p(1 − p/q). Considering the continuity equation:

∂CT i

∂t
= −∇ · JT i (7)

and using the expression forJT i given in equation (5), we obtain a nonlinear partial
differential equation for the Ti diffusion:

∂CT i

∂t
= ∂

∂x

(
Deff

∂CT i

∂x

)
+ ∂

∂y

(
Deff

∂CT i

∂y

)
. (8)
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This equation is general for describing the diffusion of a given ion in a crystal where
exchange with another ion occurs. When the valencies of these ions are equal (p = q)
β = 0, but the parameterα can be different from zero in cases where the ions diffusivity
are not equal, and we may still define an effective diffusivity. This means that when the
ions participate in the diffusion process with different valencies, or with different mobilities,
the charge balance requirement leads to an effective diffusivity for the in-diffused ions. On
the other hand, ifr = 1, we haveα = β, E = 0 and the effective diffusivity becomes the
titanium diffusivity. In this situation, therefore we re-obtain the usual diffusion equation,
under Fick’s approach, without ion exchange.

In our model the real diffusivity has a spatially dependent activation energyEi due to
the Li out-diffusion and is usually written as:

Di = D0i exp

( Ei

KT

)
(9)

where againi stands for Ti or Nb andD0i is a term proportional to the jump distance and
frequency inherent to the diffusion mechanism in the crystal. Here, the activation energy
will be expressed with the assumption that only variations along the direction perpendicular
to the crystal surface will exist, as also considered in reference [12]. This means that the
out-diffusion of Li is assumed to be the same along the entire crystal surface, even through
the Ti film deposited on the crystal surface. Under this hypothesis, the activation energy,
Ei , is written in the form:

Ei = Ei − 1i(y) (10)

where Ei is the unperturbed activation energy (without Li out-diffusion) and1i(y) is a
monotonically decreasing function, conveniently chosen to describe the spatial variation
of the perturbation in the activation energy. References [19] and [20] show that the
concentration depletion of Li is well fitted by different functions such as exponential, error
function and integral-error function, and since1i(y) is assumed to be proportional to the Li
concentration, it may also be described by these functions. For simplicity, we will assume
1T i(y) = 1Nb(y), such thatr does not depend on they-coordinate and the subscripti can
be dropped. Although this assumption is not crucial to obtain the enhanced lateral diffusion,
as we have verified in our numerical calculations, it simplified the solution and makes easier
the analysis of the situation where the ion exchange is not present. In this case, we have
just to setr = 1, as discussed previously.

It is usual to express the diffusion equation in a dimensionless form. TakingL

as the substrate thickness we define:τ = DT it/L
2, with DT i = D0

T i exp{−ET i/KT },
ξ = x/L, χ = y/L andu = CT i/C0, and using equation (9), the dimensionless diffusion
equation will be:

∂u

∂τ
= eδ(χ)

{
∂

∂χ

[
1 − βu

1 − αu

∂u

∂χ

]
+ ∂

∂ξ

[
1 − βu

1 − αu

∂u

∂ξ

]
+ ∂δ(χ)

∂χ

[
1 − βu

1 − αu

∂u

∂χ

]}
(11)

where δ(χ) = 1(χ)/KT . For δ(χ) = 0 (unperturbed activation energy) one recovers
the equaton with just the ion exchange [16]. Equation (11) can be solved numerically by
the two-dimensional finite-element collocation technique, which allows the use of several
different functions to describe1(y).

3. Numerical results

This section presents results of the numerical solution of (11). The activation energy
perturbation is described by an exponential function of the type1(y) = 10 exp(−y/σ), or
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in the dimensionless form

1(χ) = 10 exp(−χ/σ ′) (12)

whereσ ′ = σ/L. Other functional descriptions can be used, such as Gaussian and others,
with no extra computational problem.

The initial condition isC(0, ξ, χ) = 0. Therefore, no Ti has been diffused inside the
crystal atτ = 0 (t = 0). On the other hand, the boundary conditions used in our calculations
are the following: (i) forτ < τs , u(τ, ξ, 0) = 0.25 for |ξ | < w/2, (∂u/∂χ)χ=0 = 0 for
|ξ | > w/2 and (∂u/∂χ)χ=1 = (∂u/∂ξ)ξ=−1/2 = (∂u/∂ξ)ξ=1/2 = 0, and (ii) for τ > τs ,
(∂u/∂χ)χ=0 = (∂u/∂χ)χ=1 = (∂u/∂ξ)ξ=−1/2 = (∂u/∂ξ)ξ=1/2 = 0. Here,w is the film
width andτs is the instant of time when all the Ti deposited on the LiNbO3 wafer surface has
been totally diffused into the crystal. The conditionu(τ, ξ, 0) = 0.25 is the same as used in
[14] and is obtained from (1) assuming that at the interface where the Ti film is deposited
CNb = 0, which leads tou(τ, ξ, 0) = 1/p. This time can be obtained by integrating the
mass of Ti diffused within the crystal (md ) and comparing with that deposited (m0) on
the wafer surface. Whenmd = m0, with a precision conveniently chosen in the computer
program,τs is obtained and the boundary conditions are changed. Forτ < τs , our boundary
conditions impose that the Ti concentration on the surface is constant and equal to the
normalized concentrationCT i/C0. It is also imposed that no flux of mass exists through
the surface located atχ = 1, which is opposite to that where the Ti film was deposited and
from the other lateral surfaces. After the switching timeτs , the boundary conditions are
changed to the new set and the concentration at the surface where the Ti film was deposited
is free to vary while no flux of mass exists at any other crystal surface.

Figure 2 shows the concentration distribution as a function ofx and y obtained with
r = 0.5 andδ0 = 5.0, whereδ0 = 10/kT . This result corresponds to the case where both
the activation energy perturbation, given by the exponential function, and the ion exchange
occur. Forδ0 = 5.0, the activation energy perturbation1(y) at the surface corresponds
to a decrease of about 20% of the bulk activation energy. In these calculations, we have
usedσ ′ = 0.032 for the exponential activation energy distribution, which corresponds to
a depth penetrationσ = 5 µm for a wafer 160µm thick. This value forσ is somewhat
smaller than the results of Li effusion reported in [19], but it is significantly higher than
the value of 0.01 µm used by Fontaineet al [12]. We have found that both the asymmetry
and the switching time depend strongly on the parametersδ0 and σ . In this way, it is
possible to increase the value ofσ by increasingδ0 and still have a highly asymmetrical
profile. However, in this case, the switching time decreases to very small values, much
lower than what is obtained experimentally (a few hours, depending on the film thickness
and the diffusion temperature, as measured in [21]).

Figure 3 shows the time evolution of the concentration profile as a function ofx andy

for two values of the energy perturbation. Along thex direction (parallel to the surface) the
calculated profiles agree with experimental results of Fukuma and Noda [9], while along
the y direction they are in agreement with those reported by Minakataet al [22]. It is
interesting to point out that, in this later situation, both our theory and their results present
a bump inside the bulk, whose position depends on the diffusion time.

The asymmetry in the diffused Ti profile can be more easily seen in figure 4,
where topographic concentration curves are shown for different Ti diffusion cases, namely
(a) without activation energy perturbation (δ0 = 0) and with ion exchange (r = 0.5),
(b) without ion exchange (p = q) and with activation energy perturbation (δ0 = 5.0 and
σ = 5 µm) and (c) both effects being considered (δ0 = 5.0, σ = 5 µm and r = 0.5).
The experimental values ofδ0, σ and r are not known, but we are using numbers with
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Figure 2. The three-dimensional concentration distribution with activation energy perturbation
(δ0 = 5.0 andσ = 5 µm) and ion exchange (r = 0.5), for w = 16 µm andt = 7 h.

physically meaningful magnitudes. The curves corresponding to the spatially dependent
activation energy are much wider than those for a constant value ofE , but even in this case
an asymmetry arises due to the film width. These results indicate that a smaller asymmetry
should be expected in the Ti concentration profile only as a consequence of the spatial
dependent diffusivity caused by the ion exchange diffusion process. The model presented
here was also applied to other functions describing1(y), such as Gaussian and negative
slope straight line. The results obtained were qualitatively the same as the one obtained
with the exponential function. Therefore, we suggest that the asymmetrical Ti concentration
profile arises not due to asymmetries of LiNbO3 properties nor due to the ion exchange
process, but as a consequence of the diffusion process which induces perturbations on the
wafer properties as a consequence of the Li effusion, building up an asymmetric behaviour
in the diffusion process.

4. Conclusions

This work has presented a theoretical model for Ti in-diffusion in LiNbO3 assuming that the
Ti activation energy is perturbed by the Li effusion that occurs as a consequence of crystal
heating together with the ion exchange during the diffusion process. The effusion causes
a Li depletion that is function of the depth and this concentration gradient produces the
perturbation on the activation energy. A behaviour similar to this was also observed during
the diffusion of divalent ions in doped alkali halides [23]. The ion exchange between Ti
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Figure 3. The evolution of concentration profiles with ion exchange (r = 0.5) for two values
of energy perturbation (withσ = 5.0 µm) along the direction parallel to the wafer surface at
y = 0 and along the depth diffusion atx = 0. In (a) and (b)δ = 2.5, and in (c) and (d)
δ = 5.0. The curve labels indicate the diffusion time (1,t = τs ; 2, t = τs + 3 h; 3, t = τs + 5 h;
4, t = τs + 7 h; 5, t = τs + 9 h).

Figure 4. Topographical curves at half-maximum concentration forδ0 = 0 and r = 0.5 (a),
p = q = 0, δ0 = 5.0 andσ = 5.0 µm (b) andδ0 = 5.0, σ = 5.0 µm andr = 0.5 (c).

and Nb ions is directly related to the necessary neutrality of charges that must occur within
the crystal bulk. Adopting initial and boundary conditions that fit as closely as possible
the physical phenomena taking place during diffusion, our model leads to the asymmetrical
Ti concentration profile observed experimentally. In our model some improvements are
in progress, for example considering the effusion of Li taking place together with the Ti
diffusion. This approach will lead to coupled non-linear diffusion equations, significantly
increasing the degree of calculation level, and will be reported in a future work. The main
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conclusion we obtained is that the asymmetrical Ti concentration profile is not a result
of intrinsic asymmetries in the physical properties of LiNbO3. Instead, the asymmetrical
Ti concentration profile results from the induced phenomena caused by the effusion of Li
which has its origin in the crystal heating and, to a lesser extent, in the ion exchange that
occurs during the diffusion process. Finally, we should point out that for other types of
cut, the diffusion would occur for directions different from they direction and in this case
the value of10 could change according to the diffusion direction. As a consequence, the
asymmetry of the Ti concentration profile could be smaller than the one studied here, as
experimentally observed by Fukuma and Noda [9].
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1070
[8] Kollewe M and Kling A 1992Phys. Lett.169A 177
[9] Fukuma M and Noda J 1980Appl. Opt.19 591

[10] Burns W K, Klein P H, West E J and Plew L E 1979J. Appl. Phys.50 6175
[11] Holmes R J and Smith D M 1984J. Appl. Phys.55 3531
[12] Fontaine M, Del̂age A and Landheer D 1986J. Appl. Phys.60 2343
[13] Mikailov M D, Osizik M N and Shishedjiev B K 1982 J. Heat Transfer104 781
[14] Nunes F D Jr, Andrade J S and Filho J M 1994J. Phys.: Condens. Matter6 4067
[15] Villadsen J and Michelsen M L 1978Solution of Differential Equation Models by Polynomials Approximation

(Englewood Cliffs, NJ: Prentice-Hall)
[16] Silva H F 1994Master ThesisDepartment of Physics, Universidade Federal do Ceará
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